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ABSTRACT: Traditionally in servo systems, the PI(D) controller has been widely used, while other types such as
the PDF controller has been applied in some applications. In this article, the PDFF controller which has
feedforward term in addition to a conventional PDF(Pseudo-Derivative Feedback) controller is introduced.
Tracking and regulation characteristics of the PDFF controller in motion control applications are analyzed in
terms of classical frequency domain approach. The PDFF controller is shown to be a generalized PI(D) controller,
and relative performance of the well-known cascade PI(D) controller and the PDF controller are dealt with as two
special cases. A tuning method of this controller to meet desired performance criteria such as dynamic reference
tracking, steady-state error and load torque disturbance rejection capability is discussed along with experimental
results.

I. INTRODUCTION

In high performance motion control applications, a classical multi-loop structure (current loop inside,
velocity loop in the middle, and position loop outside) has been widely used, and each loop is controlled by a PID
(proportional, integral, and derivative), Pl or simply P controller for adequate response. Traditionally, control of the
above three control variables has been analyzed and designed separately. For example, the current controller is
designed by a power stage design engineer and the velocity control is the responsibility of a drive control engineer,
while the position control is designed by a servo engineer at the system integration level. Although this tradition is
changing with the advent of intelligent positioning drives using high throughput microprocessors, the multi-loop
structure is still favored because of simplicity in control and the natural hierachy of bandwidth requirements. The
PI1(D) controller has been very popular in industry due to its simple structure and relatively easy tuning procedures
with acceptable performance [1]. Several tuning techniques such as Ziegler-Nichols method [2] provide a good
intuitive concept to tune the system without knowing the accurate model of a plant. Often, these tuning methods
provide satisfactory responses. Although not as popular as PID, the PDF controller has been proposed and used in
some applications [3-4]. This is a state-feedback type compensator and has demonstrated a good regulation
performance. Before analyzing characteristics of the above controllers, let's consider serveral unique situations
encountered in industrial motion control applications including machine tools, factory automation and robotics.

(1) In many motion control applications, plant parameters such as load inertia and friction are not exactly known
until the system is installed. In some cases, parameters may vary during operation as the payload changes. Relative
variations of these parameters can be quite large (for instance, inertia variation of more than 10 to 1 is not unusual).
For this reason, controller parameter tuning must be done on site by users instead of the factory setup. A PI(D)
controller or one of its derivatives is a very good choice because of industry-wide familiarity and ease of tuning.

(2) There are several performance requirements for satisfactory motion system response. Two of the most important
performance criteria are the reference tracking (or simply tracking) capability in both dynamic and steady-state
conditions and the load torque disturbance rejection (regulation) capability. Optimal setup for one requirement may
not give satisfactory performance for the other requirement. For motion systems, parameters are usually tuned so
that command tracking performances such as rise time, overshoot, and settling time are satisfactory. This tuning may
lead to an unsatisfactory response to a step load change (like gravity effect, impact of cutting force, etc.). For a
system designed and tuned for a very high degree of load regulation, its tracking performance may not be fast
enough.

(3) Often in motion control systems, the system bandwidth is limited by the presence of a torsional resonance of the
mechanical system. A compensator that adds zeros to the system may unexpectedly amplify the the resonance unless
an additional filtering is introduced.

(4) Most practical motion control systems have limited linear operating ranges. As a result, current and torque
outputs saturate whenever the magnitude of the input signal exceeds a certain limit. For meaningful analysis of
motion controllers, the amount of control effort must be taken into consideration.



(5) Velocity control performance is more important when an AC motor is used than using with a DC motor. In the
DC motor, proportionality relation between armature current and generated torque is reasonably good and
maintained during oepration, while in AC motors, the torque and the equivalent armature current are not exactly
proportional due to higher torque ripple and coupled dynamics with magnetic flux in the motor. Nonlinearities in
torque response and torque transients in the AC motor requires additional effort to the velocity control loop.

(6) Autotuning is gaining popularity in motion control to help users in tuning the parameters. Configuration of
controllers must be accompanied by a good autotuning capability.

In view of the above situations, the well-known PI(D) or more precisely the "Cascade PI(D)" controller is very
attractive in terms of simplicity and popularity. Fig.1.1(A) shows a frequency domain block diagram of a plant with
a Pl controller of the form

u@s) = (Kp + Kils) e(s), (1.2)

where e(s) = r(s) - y(s) is the error signal, u(s) is the control input to the actuator.
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(A) Plant with PI controller

(C) Plant with PDFF Controller

Fig.1.1 Various Controller Configurations

It is known that the PI controller does not offer a good disturbance rejection performance compared to other types of
controllers. An alternative scheme called the PDF (Pseudo Derivative Feedback) controller [3,4] which can be
expressed as

u@s) = (Kifs)e(s) - Kpy(s) (1.2)

has been known for many years. In this scheme, proportional gain Kp is acting only on the output y(s). As in
Fig.1.1(B), the PDF controller does not use error signal directly. Another control scheme called the "PDFF
controller" (Pseudo-Derivative Control with Feedforward Gain) shown in Fig. 1.1C will be analyzed [3,5] and
compared with the above controllers. It has the form of

u(s) = (Kifls)e(s) +Kprr(s) - Kpfy(s), (1.3)



which is the PDF controller with an additional feedforward term. It will be shown that PDFF controller constitues a
generalized P1(D) controller, and relative performance of the cascade PI(D) controller and the PDF controller are
dealt with as two special (extreme) cases. Throughout the paper, continuous control system approaches are taken,
but the results are equally applicable to corresponding digital control systems.

1. PROBLEM FORMULATION
The linear mathematical model of a servo motor and an amplifier connected to a load has been found in

many textbooks [6]. Without closed-loop current control, the plant transfer function from voltage command r(s) to
motor speed uXs) can be modelled by a second order system as,

w(s) K
G'(s) = M = [ (2.1)
r(s) (s+a)(s+c)

where 1/a is called mechanical time constant, while 1/c is called electrical time constant of the plant. When high
gain closed-loop current control is implemented as a minor-loop control, two poles are pushed apart, so that
mechanical time constant is increased, while electrical time constant is decreased [7]. With high gain current-loop
control, the plant can be simplified as a first order model of

b
G(s) = [ (2.2)
S+a

where b = K/ c. Here, the coefficient "a" is a relatively small number (slow pole) and may be set to zero (resulting in
an integrator) in most inertia dominant applications. For this system, adding a derivative term in a controller has
similar effect of readjusting current-loop control, and a derivative feedback is not normally used due to the
introduction of noise from obtaining the derivative of the velocity signal, resulting in a simple PI controller as shown
in Fig.1.1(A). In this configuration, control action is only based on error signal only. As an alternative control
scheme, the PDF controller shown in Fig.1.1(B) is also used in some applications. This is also known as a state
feedback, or pole- placement type controller, because this scheme moves the locations of open-loop poles without
affecting open-loop zeros. A generalized control structure can be constructed by adding a feedforward term to the
PDF controller, as shown in Fig.1.1(C). This configuration will be called the "PDFF" controller following [3]. PDF
or PDFF controller may have additional derivative terms, and to distinguish them, the terms "PDF-1 and PDFF-1"
will be used for controllers without derivative term, as opposed to "PDF-2 and PDFF-2" for controllers with
derivative terms. Discussion on PDFF-2 controllers will be in section IV. Ina PDFF-1 controller, if Kpr is set equal
to Kpf, the PDFF-1 becomes PI, while Kpr=0 makes the PDF-1 controller. So, the PDFF-1 controller can be
regarded as a generalized PI controller. In order to study characteristics of the controllers, a set of transfer functions
is derived by selecting various input and output points from Fig.1.1(C) as shown in the following.:

<reference to output>
y(s) b(Ki + Kpr s)
Ge(s) = D = [T (2.3)
r(s) s2 + (a+ b Kpf)s + b Ki
<reference to error>
r(s)-y(s) s2 + (a+ b Kpf-bKpr)s
Ge(s) = [ = [ (2.4)
r(s) s2 + (a+b Kpf)s + b Ki

<reference to amp input>

u(s) (Ki+Kprs) (s +a)



Gu(s) = D = (I (2.5)
r(s) s2 + (a+b Kpf)s + b Ki
<disturbance to output>
y(s) bs
Gd(s) = D = [T (2.6)
d(s) s2 + (a+ b Kpf)s + b Ki
For convenience, let's define the ratio
p = Kpr/Kpf, (2.7)

for upcoming discussion. We willl consider the range of p between 0 and 1, which is the practical range. Note that
all three controllers on Fig.1.1 have identical closed-loop characteristic equations, because the feedforward signal
does not affect closed-loop poles. It is apparent that chracteristic differences on the above controllers are solely due
to the location of zeros. When Kpf and Ki are tuned so that the characteristic polynomial has two identical roots
(critical damping), the closed-loop poles (double) are given by Eqg. 2.8, neglecting a small coefficient a.

s = -2 Ki/Kpf. (2.8)

Now, the load disturbance transfer function of Eq. 2.6 is identical for three types of controllers. Load
torque disturbance rejection capability is one of the most important specifications in many motion control
applications. When a motor is connected to a reduction gear of high ratio, or the load torque disturbance is small
enough, torque disturbance may be negligible. But when the motor is connected to the load directly or with low ratio
gear, as in direct-drive robot arms or a machine tool spindle drive, and disturbance torque, such as impact of a tool
on an unworked piece, is large, then disturbance torque rejection capability is important. For a critically damped
second order system, disturbance rejection capability is better if closed-loop system poles are faster (more to the left
side in the complex plane). For a system with identical undamped natural frequency (wy), the effect of disturbance
to the output is dependent upon damping ratio. Fig.2.1 shows step disturbance response to the system of Eq.2.6, with
fixed Ki, for 5 different values of Kpf (Kpf = 0.5, 0.75, 1.0, 2.0 and 5.0). Plots indicate that the peak magnitude of
the response and settling time are dependent on selection of the damping constant. With step disturbance d(s) =
Dm/s, EQ.2.6 becomes

b Dm
Y(s) = [ (2.9)
s2 + (a+ b Kpf)s + b Ki

Output response can be obtained via Inverse Laplace Transform of the above equation. For overdamped case, where
s1 and so (s1 > sp) are absolute values of two negative real roots,

b Dm
y(t) = [ {exp(-sp 1) -exp(-sp O} (2.10)
51-952
and for underdamped cases, where m is the real part, and n is the imaginary part of the complex conjugate roots,
b Dm
y(t) = [0 exp(- mt) sin (nt) (2.11)
n

Fig. 2.1 shows that peak magnitude of the disturbance response can be reduced by increasing the damping constant.
But as damping is increased, a reduced peak magnitude can only be achieved with the expense of slow settling time
due to the effect of a slower real pole. A compromise must be made between optimizing peak magnitude and settling
time. A normal choice of damping ratio would be within 0.707 - 1.5.
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Fig. 2.1 Effect of Damping Factor in Step Disturbance Response
(System of Eq. 2.6 with b=1, Ki = 16)

111. PERFORMANCE COMPARISON

First, consider steady-state error. When the reference input is the unit step, steady-state error can be
calculated by applying the final value theorem to Eq. 2.4 as

Ge(s)
Ess (step) = lim s D
s-0 S

0. (3.1)

As can be seen from the above equation, zero steady-state error will result for all compensators (regardless of the p
value). This is the effect of integral term in the controller. Next, consider the steady-state error when the reference
input is changing linearly (constant acceleration). Applying the final value theorem again,

Ge(s) a + b(Kpf - Kpr)
Ess (ramp) = lim s [0 = ([ : (3.2
s-0 52 b Ki

This error will be very small when the cascade PI controller is used (p=1 or Kpr=Kpf), because the constant a is very
small in most motion control applications. The PI controller gives the best steady-state ramp error among all Pl
controller configurations. As p decreases, steady-state ramp error will be increased, and maximum error will be
approximately Kpf/Ki when p=0.

Next, consider the reference to output transfer function Ge(s). As in Eq. 2.3, except PDF controller, a zero
is introduced in the closed-loop system. It is well known in control theory that the disturbance response can be tuned
by moving closed poles and tracking response can be further optimized by adding zeros to the system via
feedforward. Let's look at the system in more detail. Since Gc(s) has zero at

= -Ki/Kpr, (3.3)

and poles at the location given by Eq. 2.8 (assuming double poles), it is evident that relative location of the zero to
the pole varies as p changes. When p varies from 0 to 1, the zero given by Eq. 3.3 moves from negative infinity to
halfway between the pole and the origin. Fig 3.1(A) shows output responses of Ge(s) due to unit step reference input
with several different values of p between 0 to 1. All of the other values are fixed (a=1, b=1, Kpf=7 Ki=16 )
allowing two identical negative real poles. Required actuator input for each output response is depicted in
Fig.3.1(B). We can tell from Fig.3.1 that as negative closed-loop zero approaches to the origin, it calls for high
instantaneous current (energy) change at the early part of the step, resulting in a fast rise time and a high overshoot.
As zero moves toward the left side, its effect is decreased and the maximum energy requirement is smaller, and its
time is delayed more. It has been shown that addition of a dominant zero to the system adds overshoot to the system



and decreases the rise time. In fact, the location of zero set by high p value ( p = 1) generates too big an overshoot
that is not acceptable in motion control. Practically, to overcome the overshoot, most Pl controller gains are tuned
so that the system is slightly overdamped. This agrees the well-known observation that PI controller offers better
command response, while PDF controller gives better stiffness. The better controller would be the PDFF controller
which locates the zero at an optimal place that shortens the step response rise time without overshoot. The p value
that leads to the optimal response would be 0 < p < 1.
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Fig. 3.1 Command Step Response and Required Excitation
(System of Eq. 2.3 with a=1, b=1, Kpf=7, Ki=16)

Since every practical system has a limited energy delivering capability, one test is to see the step responses
when a fixed limit of maximum energy call is given for all controllers. In servo systems, operation is within linear
range while error is small, but the system saturates when the error becomes larger. The system with larger linear
range would be a merit. From Fig. 3.1, we can see that if we limit the peak control input to the same value at 1.75,
control gains of Pl and PDFF controllers has to be lowered to meet the constraint, and PDF has the fastest response
time. This fact indicates that the system with PDF controller has the largest linear operating range [5]. Now this
time, let the actuator saturate if the control command is above a set limit. Fig.3.2(A) shows response with the peak
torque limit set at the peak torque value of the PDF controller, as indicated by Fig. 3.2(B). This nonlinear
characteristic is simulated by applying the 4-th order Runge-Kutta method using MATLAB. Corresponding state-
space representation of the system with the PDFF controller is given in Appendix A. In the simulation, all
parameters are identical in both controllers except Kpr. In this case, the PI controller gives faster rise time than the
PDF even with identical torque limit. This is because of quick consumption of required energy. Except PDF
controller, discontinuous control input adds high frequency signal to the system and may excite the torsional
resonance. The amount of jerk is highest with PI controller. Although no overshoot is present in this simulation with
Pl, it is an inherant characteristic in linear region as stated above.

When the cascade PI controller is tuned, "pole-zero cancellation” tuning should be eliminated. When
cascade PI controller parameters are tuned, they may be set so that controller zero, -Kpr/Ki isto cancel slow
plant pole at -a. This cancellation controller setting is not very desirable because of its poor robustness
characteristics. When plant pole is deviated from its nominal value after tuning is done, pole-zero cancellation does
not occur, and a slow plant mode appears in the output leading to a sluggish system response. In addition to poor
robustness, the cancellation controller leads to a very slow load torque disturbance response, because plant poles are
not altered in the disturbance transfer function. A detailed explanation can be found in [8,9]. Also, classical root
locus or reference step design rules do not consider disturbance rejection and can sometimes lead to poor regulation.
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Fig. 3.2 Step Command Responses with Saturation

The above statements are verified by a Baldor Spindle Drive, connected to a 5-HP motor on a test bed. The
drive features a digital PDFF-1 controller for velocity control. A more detailed description can be found in [10].
Fig.3.3 shows three reference step responses of the system with Pl, PDF and PDFF controller, which are tuned
independently of each other to have comparable rise time and overshoots. Note that actual gain values shown in the
figures are appropriately scaled in software, but relative magnitudes can be compared to each other. As expected,
undamped natural frequencies («n = v b Ki ) were highest in the PDF controller. Step disturbance responses for the
above system parameters were tested by short circuiting the load motor while the source motor is running at a
constant speed. Response for Pl and PDF systems are shown in Fig.3.4, showing very small disturbance magnitude
on the output with PDF controller. Disturbance response with PDFF-1 control will be between the two responses.

From the previous analysis, characteristics of PDFF-1 controller can be summarized as follows:

(1) The PI controller (PDFF with p=1) gives the smallest steady-state error during speed change. It offers a very
good reference tracking capability compared to PDF.

(2) With no additional zeros imposed, PDF ( p = 0) controller generates smooth, continuous control input. In terms
of exciting high frequency signals, which may include mechanical resonance of the system, the PDF controller is the
best. For disturbance tracking performance, PDF controller is better than PI due to the fact that it does not have to
be tuned with overdamping to reduce overshoot as in PI.

(3) For most practical systems, both reference tracking and disturbance rejection capability are important, and the
PDFF controller gives flexibility in weighing relative importance of these two performance requirements. The only
disadvantage of PDFF controller is that it has 3 parameters to tune. In order to tune PDFF controller, one can start
tune the system with p = 0 to tune for disturbance rejection and then tune the feedforward gain ( nonzero p) for best
reference tracking response without overshoot.

IV. EXTENSION TO HIGHER ORDER MODEL

When velocity control of a motor with voltage amplifier (no current feedback) is desired, or when
controlling position without inner velocity-loop control, the plant can be modelled as a second order system. For a
second order system, it is known that it is extremely difficult to achieve fast response with a simple PI type controller
and often derivative action is added to damp the system oscillation to get a fast response. The analysis described in
the previous section can be extended to a second order model by applying PDFF controllers in cascade for each
state. For example, a position controlled motion system can be controlled by adding another PDFF position
controller to the system whose speed is controlled by the PDFF controller as inb Fig. 1.1C. Since adjusing 6
parameters for a second order plant is too complex and addition of two integraters in the system is not desirable to
the system stability, a PDFF-2 controller can be constructed by eliminating one inner integration. A block diagram
of a plant with the PDFF-2 controller are depicted in Fig.4.1. Whenever a derivative signal is acquired, high



frequency noise amplification must to be considered, and an appropriate low pass filtering is necessary in most cases.
Since this filter frequency is usually higher than the frequency of our concern, it is simply neglected in our analysis.

For the PDFF-2 controller, we can define a constant q as the ratio of Kdr to Kdf, corresponding to the definition of
constant p. Closed-loop transfer functions correspondent to Eq.2.3 - Eq.2.6 applied to a double integrator system

G(s) = b/ s2 are as follows.

<reference to output>

y(s) b (Kdr s2 + Kpr s + Ki)
Ge(s) =MD = (D (4.1)
rs)  s3+bKdfs?+bKpfs+bKi
<reference to error>
y(s) S (52+b (Kdf-Kdr) s+b (Kpf-Kpr))
Ge(s)= M0 = (I (4.2)
r(s) s3 + b Kdf s2 + b Kpf s + b Ki

(8) POF

(C) POFF

Fig.3.3 Tachometer Outputs of ASBTS-20 with Step Input
(Tuned PI, PDF and PDFF) 2
Time 0.1 See/Div (left) 0.01 Sec/Div (right)

)RR p=1 Kpf=400 Ki=5
LB PEE p=0 Kpf=790 Ki=25
(C) PDFF p=0.5 Kpf=610 Ki=19

Fig.3.4 Disturbance Step Responses
at 750 RPM (Tuned Pl and PDF)
Time 0.5 Sec/Div, Speed 8 RPM/Div

Torque change 0 = 45 in-lbs



<disturbance to output>

y(s) bs
Ge(s) = M0 = (I (4.3)
rs)  s3+bKdfs?+bKpfs+bKi

Similar results as in the previous sections can be obtained from the above transfer functions. Disturbance
response is irrelavant to the two feedforward gains, tracking capability is best with PID (p = 1 and q = 1), and two
zeros in Eq. 4.1 is mandatory in PID control and may not be at a desiable location. For this PDFF-2 controller,
tuning may be done without Kpr and Kdr for disturbance rejection first, and then Kpr and Kdr are selected to obtain
best tracking capability. For the PDFF-2 controller, location of zeros in the output transfer finction of Eq. 4.1 can be
expressed as

z = -(Kpr/2Kdr) £ v (Kpr/2 Kdr)2 - Ki/ Kdr. (4.4

From the above expression, it can be concluded that the practical range of p and g (or Kpr and Kdr) is not restricted
to 0 - 1 as in PDFF-1 controller. In fact, if p =0, the zeros are located on the imaginary axis which is not desirable,
and this is the reason that proportional action is included in most position control. Also, g value may be increased to
a value greater than unity to locate the zeros at an appropriate location. Although the PDFF-2 controller exhibits
superior performance in motion control, practically it is complex for general drive users to tune unless the system has
autotuning features. From now on, we will discuss about several simplified controllers.

Fig. 4.1 A PDFF-2 Controller

When Kdr=0 and the derivative feedback term Kdf is moved as in Fig.4.2(A), the node z acts as a velocity
reference. The addition of an outer PDF control makes P+PDF controller shown in Fig.4.2(A). The cascade PID
controller shown in Fig.4.2(B) is another popular controller. Different characteristics between Pl and PDF
controllers can be extended to the PID and the P+PDF controllers. The P+PDF controller exhibits a very good
disturbance rejection capability because only the pole-placement strategy is used, while in the PID controller
additional two zeros introduced by the controller may increase overshoot as well as tracking performance. In order
to compromise between tracking and regulation requirements, various other configurations are possible. The
purpose of the derivative feedback is to move the plant (mechnical) pole to higher frequency (to the left side) so that
the plant is closer to a first order model seen from the rest of the controller. For this analysis, assume that the above
double integrator plant. With a derivative feedback, we have a modified plant of

b
Gy(s) = (T (4.5)
s (s + b Kd)

Clearly, this equation shows that a high derivative gain Kd pushes one pole of the system to a higher frequency and
the plant with derivative feedback behaves closer to a first order model. Often this effect can be interpreted as



increased damping. On this modified first order plant, we can now apply any one of Pl, PDF or PDFF controller for

desired response.
) P

(A) P+ PDF Configuration

Pr 4+ w P
—-O_"( Kp + Ki/s + s Kd G(s) "

(B) PID Configuration
Fig.4.2. PDF2 and PID controllers

One other configuration is shown in Fig.4.3(A), called PDF+P controller. It can be easily verified that this controller
and P+PDF controller of Fig.3.2(A) give identical transfer function. This configuration for position control is very
attractive in a drive offering both position and velocity control, because addition of just one more parameter is
required when switching to a position control mode. Both configurations show a good disturbance rejection
characteristics while the tracking performance may not be as good as the PID. Fig.4.3(B) shows P+PI control
scheme. In application such as multi-axis position control where the tracking capability is important, this scheme
offers a better position tracking performance than the PDF+P configuration.

W P
fo- (60 |7 s

(A) PDF + P Configuration

Pr+ W P

(B) P + PI Configuration

Fig.4.3. Other Control Schemes for Second Order Systems.
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Now, consider the derivative feedforward Kdr. When Kdr is considered in addition to P+PI configuration
of Fig.4.3, Kdr may be used to improve rise time of the velocity performance which enables higher bandwidth of the
outer position loop. The effect of Kdr can also be interpreted as relocation of a closed-loop zero to the reference to
output transfer function. When PDF outer controller is desired, signals at node z in Fig.4.2(A) will never change
abruptly even though reference input is a step. This means that step response of the modified plant may tolerate
certain degree of overshoot. So in this case, effect of derivative feedforward action is not as pronounced as in Pl
outer controller.

V. CONCLUDING REMARKS

Characteristics of a PDFF (a generalized PI(D)) controller for motion control applications are analyzed in
terms of location of closed-loop poles and feedforward zeros. By using this scheme, relative performance of the
well-known Pl and PDF controllers are dealt with as special cases. It has been shown that with an additional
flexibility of the PDFF controller, compromising tuning to satisfy two independent performance objectives (tracking
and load regulation) is possible. Analysis is extended to a higher order system with the PDFF-2 (with derivative
terms) controller and similar results are concluded. Several simplified control structures originated from the PDFF-2
controller are discussed.
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APPENDIX A. DYNAMIC EQUATION
OF A SATURATED FIRST ORDER SYSTEM WITH
PDFF CONTROLLER

Define the state vector x(t) = [x1(t) x2(t) ]' as indicated in the block diagram in Fig. A.1 below. Without
considering saturation, the state space representation of the closed-loop system is

dx/dt = Ha -b Kpf b Ox + bKprdr (A1)
O - Ki 00O OK 0O
y = [ 1 0 ] x

The control input u(t) is subject to a saturation limit so that if the absolute value of u(t) is greater than a set limit, v(t)
is limited to the saturated value in magnitude. Practically, this saturation corresponds to the PWM duty cycle of 100
percent in the PWM voltage source amplifier. This nnonlinear dynamic system is simulated with 4-th order Runge-
Kutta method.

Kpr

r _ W
—-’B_—e’Ki—IXZ—Tc_“V b —o- [ A

Fig. A.1 Velocity Control System with PDFF controller and Actuator Saturation
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